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1 Introduction

A fundamental issue for policymakers tackling climate change is determining

how to allocate scarce resources into infrastructure to enhance productivity,

mitigate further CO2 emissions, and adapt to its unavoidable present and

future impacts. As to the latter two issues, three decades of national and

international policies have focused almost exclusively on mitigation, but the

long timeframe of the carbon cycle means temperatures would continue to

rise for more than forty years even if global CO2 emissions ceased today.

Public policy should therefore also support adaptive infrastructure in addi-

tion to climate change mitigation and ‘traditional’ productivity-enhancing

investments.

We present an extended integrated assessment model (IAM) which, build-

ing on Bonen et al. (2016), explicitly solves for these canonical policy re-

sponses to climate change in an optimal decision framework. As with other

IAMs, our approach ties economic activity with externalities and their cli-

matological impacts and feedback effects. The proposed extension of our

IAM framework includes public sector policies concerning optimal decisions

of both funding through revenues as well as expenditures. We also include a

renewable energy sector in the model. However, we avoid common simplific-

ations1 to IAM complexity (e.g. the ‘curse of dimensionality’) by employing

1The most common approach is to solve for economic growth trajectories in isola-
tion from the climate system and then use those output scenarios to generate emissions-
temperature-impact estimations.
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a new numerical solution technique, AMPL, in which the system’s nonlinear-

ities are preserved – a facet we believe to be crucial in accurately modelling

economic-environmental interrelations.

The specific public policy questions considered by our extended IAM are

how to best allocate infrastructure expenditures to ‘traditional’ productivity-

enhancing public works,2 infrastructure designed to reduce carbon emis-

sions,3 and adaptive infrastructure.4 The central finding is that when funding

allocations are endogenously determined – rather than being fixed ex ante

– aggregate social welfare significantly improves.5 Secondly, we conduct ho-

motopic analyses on uncertain parameters. This analysis demonstrates the

model’s intuition in finding that the optimal allocation of spending is cru-

cially impacted by (i) the efficiency of the mitigation expenditure; (ii) the

discount rate; and (iii) the relative productivity of renewable and fossil fuel

energy in production. An interesting but less obvious result is that the op-

timal share of funds allocated to mitigation (adaptation) falls (rises) with the

degree of diminishing returns to mitigation, vanishing as mitigation efforts

2E.g., roads, bridges, and public schools.
3E.g., carbon capture technologies and networks of electric charging stations. Note that

renewable energy per se is not captured here and is instead built into the private capital
investment K. See Section 3 for details.

4E.g., sea walls to prevent flooding and support for new and changing agricultural
patterns

5We have also tested a specification in which these allocative decisions are continuously
updated in each time period, instead of being selected based on the initial expected social
utility. There is little improvement in moving to this approach. In addition to reducing
computational costs, the slight reduction in utility from optimally selecting a single set of
allocations suggests that any loss of flexibility in guaranteeing long-term mitigation and
adaptation funding is likely outweighed by the benefits of policy stability. Due to space
constraints we do not present these results here.
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become linearly impactful on global mean temperature changes. After the

capital allocated to the phasing in of renewable energy is accounted for, the

model estimates that upwards of 90% of infrastructural investment should be

allocated to productivity-enhancements. Note that this finding follows from

the assumption that private capital K already includes renewable energy

inputs; in production K is imperfectly substitutable with a non-renewable

resource that is the ultimate source of CO2 emissions.

The remainder of the paper is organized as follows. Section 2 discusses

the policy background and related literature on climate change modeling.

Section 3 presents the model and optimal control solution technique. Results

are reported and discussed in Section 4. Section 5 concludes.

2 Background

Leading up to the COP21 Paris meeting in December 2015, the stark trends

of anthropogenic climate change were laid out in the Intergovernmental Panel

on Climate Change’s (IPCC) Fifth Assessment Report. The The Physical

Science Basis of climate change concludes with “virtual certainty” that: (i)

the past three decades have been the hottest in 800 years; (ii) the Earth

is in positive radiative imbalance; and, (iii) human activity is a significant

cause of these historic anomalies (IPCC Working Group I, 2013, Technical

Summary). Understandably, international negotiations from Kyoto onwards

have focused on national efforts to reduce future emissions of CO2 and other
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GHGs.6 Yet, even if all global emissions had been halted by 2014, the global

mean temperature would still continue to increase over the next four dec-

ades (Oppenheimer, 2013). Indeed, the next 20 years will likely see average

temperatures reach and surpass 1◦C above the pre-industrial global average

(IPCC Working Group I, 2013, Technical Summary, TFE.8).7

In addition to the multitude of social and economic damages that result

directly from rising temperatures,8 extreme weather events are also expected

to become more frequent and intense (IPCC, 2012). The situation is even

more complicated for policymakers in developing and emerging economies

in which traditional economic development increases resilience (an aspect

of adaptation), but would likely result in greater total and per capital CO2

emissions. Balancing the competing yet often complementary needs of mitig-

ation, adaptation and development is a complex task (Bernard and Semmler,

2015; IMF, 2014, 2016).

Models focusing on adaptive policy responses, in contrast to mitigation,

followed the policy discussions with a substantial lag (Tol and Fankhauser,

1998).9 In an early paper focusing on adaptation, Mendelsohn (2000) notes

6Other high-impact GHGs are methane CH4, nitrous oxide N2O, sulfur dioxide CO2

and sulfur hexafluoride SF6.
7A 1◦C warming is notable for being half way to the 2◦C rise above pre-industrial

temperatures that had served as a political benchmark for the maximum allowable tem-
perature increase. The Paris Agreement lowered the targeted average increase to 1.5◦C.

8These include rising sea levels / loss of land, reduced agricultural output, greater
mortality due to hotter summers, and expanded transmission vectors for diseases such as
malaria and the Zika virus.

9The Chris Hope’s PAGE (Policy Analysis of the Greenhouse Effect) model is an early
exception to this lag. PAGE explicitly incorporates a “tolerable” temperature level and
rate of change. By allowing policy actions to augment these tolerable variables PAGE is
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that the climate change impact literature tends to be sector-specific and as-

sesses adaptation ex post. To generalize the approach, he presents a static

model in which agents implement efficient adaptation strategies ex ante –

i.e., before the full impact of climate change is felt.10 Subsequently, a num-

ber of economic papers and IAMs turned toward finding the right balance

between efficient adaptation and mitigation efforts (e.g., Ingham et al., 2005;

Tol, 2007; Lecoq and Zmarak, 2007; Bosello, 2008; de Bruin et al., 2009;

Bréchet et al., 2013; Zemel, 2015). The model we develop builds on these

approaches in a novel way by determining carbon emissions from an optimal

resource extraction model à la Hotelling and by simultaneously computing

the nonlinear system’s state and co-state variables.11

First, the leading IAMs assume a deterministic relationship between out-

put and the economy’s carbon intensity. Typically, a ‘back stop’ of green

technology is operationalized as a falling rate of carbon intensity (Bonen

et al., 2014). Our approach differs in that it links emissions to the rate of

extraction of a non-renewable resource (e.g., fossils fuels), and shows how

renewable energy can be phased in. This allows us to combine contempor-

able to incorporate generalized adaptation.
10By adding an additional decision variable, agents are made to choose an adaptation

strategy if it generates net positive value (Mendelsohn, 2000, p. 585). This extension
overcomes earlier model deficiencies such as the “dumb farmer” problem (i.e., not even ex
post adaptation occurs) and the use of ad hoc adaptation actions.

11The algorithmic approach employed is known as AMPL. Using AMPL enables us to
avoid the common practice of determining economic growth independently of the climate
system and then imposing the fixed economic trajectory into the climate dynamics part
of the system. Conversely, William Nordhaus’s DICE model maintains tractability by
limiting the dimensions of the dynamical system. AMPL also overcomes this restriction.
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ary ‘social cost of carbon’ modelling approaches with the resource extraction

models due to Hotelling (1931) and Pindyck (1978) as extended by Maurer

and Semmler (2011). Since the vast majority of human-generated CO2 emis-

sions are the result of burning fossil fuels, incorporating the decision-making

involved in recovering these finite resources is an important step forward

(see Greiner et al., 2010; Maurer and Semmler, 2015). In addition to the

renewable energy input, the non-renewable CO2-generating resource is a dir-

ect input producing the economy’s good. Private capital generates carbon

emissions only to the extent the non-renewable resource is used in produc-

tion, thereby embedding renewable energy technology into the production

function.

To be sure recent modelling in advances have overcome many of the limit-

ations found in first generation IAMs. Bosello (2008), for example, extends a

Ramsey-Keynes growth optimization model12 to show that mitigation, adapt-

ation and “green” R&D act as strong complements. Subsequently, Bréchet

et al. (2013) show that a country’s level of economic development and ability

(financial, political, technical, etc.) to implement projects with long-run pay-

offs affects both the optimal mitigation/adaptation mix as well as the degree

to which these policies are complementary or rivalrous. As our focus is on

long-term funding decisions, we assume mitigation and adaptation compete

for the same pool of funds even though the impact of particular projects may

be complementary. Indeed, a core feature of our IAM is that it extends an

12This is the framework used in the DICE/RICE model (see Nordhaus and Sztorc, 2013).
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optimal fiscal policy framework in which the stock of public capital can be

allocated to various economic endeavors (see Semmler et al., 2011). With

an explicit policy emphasis on infrastructural expenditure, the model also

tracks the accumulation of public debt and treats tax revenue as a dynamic

control variable.

3 Integrated Assessment Model as Optimal

Control Problem

The integrated assessment model (IAM) has 5 state variables

X = (K, g, b, R,M) ∈ R5, (1)

where K is private capital, R is the stock of the non-renewable resource, M

is the atmospheric concentration of CO2, b is the government’s debt, and g

is public capital. The dynamic system of the IAM is defined according to

K̇ = Y · (ν1g)β − C − eP − (δK + n)K − uψR−τ , (2)

Ṙ = −u, (3)

Ṁ = γ u− µ(M − κM̃)− θ(ν3 · g)φ, (4)

ḃ = (r̄ − n)b− (1− α1 − α2 − α3) · eP . (5)

ġ = α1eP + iF − (δg + n)g, (6)
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The control vector is given by

U = (C, eP , u) ∈ R3, (7)

where C denotes consumption, eP is tax revenue, and u is the extraction rate

of the resource R.

The first dynamic K̇ is the accumulation rate of private capital K that

produces renewable energy and which drives output by the CES production

function,13

Y (K, u) := A(AKK + Auu)α (8)

where A is multifactor productivity, AK and Au are efficiency indices of

private capital inputs K and (non-renewable) fossil fuel energy u, respect-

ively. In (2), private-sector output Y is modified by the infrastructure share

allocated to productivity enhancement ν1g, for ν1 ∈ [0, 1]. This public-private

interaction generates total output as Y (ν1g)β from which the economy con-

sumes C, pays taxes eP , and is subject to physical δK and demographic n

depreciation. The last term in (2) is the opportunity cost of extracting the

non-renewable resource at the rate u.

Equation (3) indicates the stock of the non-renewable resource R depletes

at the rate u. The non-renewable resource emits carbon dioxide and thus

increases the atmospheric concentration of CO2 at the rate γ in equation

13For such a simplification of a production function see Acemoglu et al. (2012) and
Greiner et al. (2014).
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(4). The stable level of CO2 emissions is κ > 1 of the pre-industrial level M̃ ,

which is naturally re-absorbed into the ecosystem (e.g., oceanic reservoirs) at

the rate µ. The last term in (4) is the reduction of Ṁ due to the allocation

of 0 ≤ ν3 ≤ 1 of infrastructure g to mitigation projects.

The last two dynamics are the accumulation of debt b and public capital g.

In (5) public debt grows at the fixed interest rate r̄, and is serviced with the

share of tax revenue eP not allocated respectively to capital accumulation

α1, social transfers α2 or administrative overhead α3 > 0 – that is, α4 ≡

1 − α1 − α2 − α3. Equation (6) says the stock of public capital, or total

infrastructure, evolves according to the allocated tax revenue stream α1eP

and funds paid in from abroad, iF . For developed countries iF = 0, but

may be positive for many developing countries. As with private capital, g

depreciates by δg, and is adjusted for population growth n.

We assume throughout that the infrastructural allocations satisfy

νk ≥ 0 (k = 1, 2, 3), ν1 + ν2 + ν3 = 1. (9)

In later analyses, we either choose fixed values of ν1, ν2, ν3 or we consider the

allocations as additional optimization variables. All other parameters in the

dynamics (2)–(6) may be found in Table 1.

Using the state variable X ∈ R5 and control variable U ∈ R3, we write
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the dynamics (2)–(6) in compact form as

Ẋ(t) = f(X(t), U(t)), X(0) = X0. (10)

The initial state vector X0 will be specified later. To this system we add the

terminal constraint

K(T ) = KT ≥ 0, (11)

the control constraint

0 ≤ u(t) ≤ umax, (12)

and the pure state constraint

M(t) ≤Mmax ∀ t ∈ [0, T ]. (13)

The terminal constraint restricts the final level of the capital stock to a

predetermined non-negative value, the control constraint prescribes an upper

bound for the extraction rate, and finally the state constraint places a cap

on the total level of CO2 in the atmosphere in each period.

Let us now define the objective functional, the social welfare functional.

We maximize (viz. minimize the negative) the following functional over a
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given planning horizon [0, T ], where T > 0 denotes the terminal time:

W (T,X,U) =

∫ T

0

e−(ρ−n)t

(
C (α2eP )η

(
M − M̃

)−ε
(ν2g)ω

)1−σ

− 1

1− σ
dt .

(14)

The felicity (utility) function in (14) is isoelastic with four input components

all in per capita terms: (i) consumption C; (ii) the share 0 ≤ α2 ≤ 1 of

tax revenue eP used for direct welfare enhancement (e.g., healthcare); (iii)

atmospheric concentration of CO2 M above the pre-industrial level M̃ ; and

(iv) the share 0 ≤ ν2 ≤ 1 of infrastructure g allocated to climate change

adaptation. Restricting the exponents η, ε, ω > 0 ensures social expenditures

and adaptation are utility enhancing, and that carbon emissions directly re-

duce utility. This approach differs from other models that map emissions

to temperature changes and then to reduced productivity-cum-output. We

believe the direct disutility approach better captures the wide ranging im-

pacts of climate change that may include health impacts, ecological loss and

heightened uncertainty, in addition to reduced productivity. Finally, note

that the discount factor adjusts for the population growth rate n from the

pure discount rate ρ as all values are normalized by the population.

To summarize, the IAM gives rise to an optimal control problem OC(p),

where the social welfare (14) is maximized subject to the dynamic constraints

(10) and the terminal, control and state constraints (11)–(13). In this prob-

lem OC(p), the notation p denotes a suitable parameter in Table 1 for which
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we shall conduct a sensitivity analysis in the next section.

A detailed discussion of the necessary optimality conditions of the Max-

imum Principle for optimal control problems with state constraints (cf. Hartl

et al. (1995)) is beyond the scope of this paper and will be given elsewhere.

4 Results

4.1 Discretization and Nonlinear Programming Meth-

ods

We choose the numerical approach “First Discretize then Optimize” to solve

the optimal control problem OC(p) defined in (10)–(14). The discretiza-

tion of the control problem on a fine grid leads to a large-scale nonlinear

programming problem (NLP) that can be conveniently formulated with the

help of the Applied Modeling Programming Language AMPL (Fourer et al.,

1993). AMPL can be linked to several powerful optimization solvers. We

use the Interior-Point optimization solver IPOPT developed by Wächter

and Biegler (2006). Details of discretization methods may be found in Betts

(2010), Büskens and Maurer (2000), and Göllman and Maurer (2014). The

subsequent computations for the terminal time T = 25 are performed with

N = 1000 to N = 5000 grid points using the trapezoidal rule as integration

method. Choosing the error tolerance tol = 10−8 in IPOPT, we can expect

that the state variables are correct up to 6 or 7 decimal digits. The Lagrange
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Table 1: Parameter values

Variable Value Definition

ρ 0.03 Pure discount rate
n 0.015 Population Growth Rate
η 0.1 Elasticity of transfers and public spending in utility
ε 1.1 Elasticity of CO2-eq concentration in (dis)utility
ω 0.05 Elasticity of public capital used for adaptation in utility
σ 1.1 Intertemporal elasticity of instantaneous utility
A ∈ [1, 10] Total factor productivity
AK 1 Efficiency index of private capital
Au ∈ [50, 500] Efficiency index of the non-renewable resource
α 0.5 Output elasticity of privately-owned inputs, Akk + Auu
β 0.5 Output elasticity of public infrastructure, ν1g
ψ 1 Scaling factor in marginal cost of resource extraction
τ 2 Exponential factor in marginal cost of resource extraction
δK 0.075 Depreciation rate of private capital
δg 0.05 Depreciation rate of public capital
iF 0.05 Official development assistance earmarked for public infrascture
α1 0.1 Proportion of tax revenue allocated to new public capital
α2 0.7 Proportion of tax revenue allocated to transfers and public

consumption
α3 0.1 Proportion of tax revenue allocated to administrative costs
r̄ 0.07 World interest rate (paid on public debt)

M̃ 1 Pre-industrial atmospheric concentration of greenhouse gases
γ 0.9 Fraction of greenhouse gas emissions not absorbed by the ocean
µ 0.01 Decay rate of greenhouse gases in atmosphere

κ 2 Atmospheric concentration stabilization ratio (relative to M̃)
θ 0.01 Effectiveness of mitigation measures
φ ∈ [ 0.2, 1 ] exponent in mitigation term (ν3 g)φ
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multipliers and adjoint variables can computed a posteriori in IPOPT thus

enabling us to verify the necessary optimality conditions.

4.2 Parameter values and initial conditions

The parameter values in the dynamics (2)–(5) are reported in Table 1. We

set the initial conditions to

K(0) = 1.5, g(0) = 0.5, b(0) = 0.8, R(0) = 1.5, M(0) = 1.5,

and choose the terminal time terminal constraint as

T = 25, K(T ) = KT = 3.

Furthermore, we restrict the extraction rate to

0 ≤ u(t) ≤ 0.1, ∀ t ∈ [0, T ].

We have considered the following two strategies for the allocations:

Strategy 1 : Choose fixed values ν1, ν2, ν3 satisfying (9).

Strategy 2 : Consider ν1, ν2, ν3 as optimization variables satisfying (9).

It would be also possible to treat νk = νk(t), k = 1, 2, 3, as time-varying con-

trol variables. However, our computations show that this strategy improves
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only slightly on Strategy 2 and is computationally much more expensive. For

that reason, we do not report those results here.

Strategy 1 selects the fixed values for the allocation of infrastructural

investments, such that the majority of infrastructure enhances productivity

and the remainder is evenly split between mitigation and adaptation. Spe-

cifically, we consider ν1 = 0.6, ν2 = 0.2, ν3 = 0.2. In the second and third

strategies we endogenize these allocative shares as choice variables maximiz-

ing (14).

4.3 Fixed versus Optimal Values of ν1, ν2, ν3

Comparing state variable trajectories under Strategies 1 and 2 demonstrates

the latter considerably improves on the former. In the first comparison we as-

sume the economic efficiency of the non-renewable resource is low (Au = 50)14

and that CO2 mitigation efforts exhibit constant marginal returns, φ = 1.

The trajectories for the three control variables (C, eP , u) and five state vari-

ables (K,R,M, g, b) are plotted in Figure 1. Under this parameterization,

Strategy 2’s optimal allocation is ν1 = 0.95, ν2 = 0.05, ν3 = 0. That is, no

infrastructure expenditures are put toward mitigation and a mere 5% is al-

located to adaptation.15 The top four panels of Fig. 1 show this endogenous

allocation, as compared to Strategy 1, results in higher per capita consump-

14By construction the efficiency index Au should be larger than AK as the former cal-
ibrates a flow input and the former a stock value.

15It is important to note that funding for renewable energy production is already cap-
tured through the variable K.
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tion, private capital accumulation and tax revenue in all periods, yet the final

atmospheric CO2 concentration is also lower. Although M is slightly lower

under Strategy 1 through the first twenty periods, this abruptly reverses in

the final periods when M grows exponentially. This seemingly odd result is

explained by the trajectories in bottom four panels.

Under both strategies the extraction rate of the non-renewable (and, here,

inefficient) resource is quickly pushed to zero so as to minimize the negative

utility impact of CO2 emissions. However, Strategy 1 over-allocates pub-

lic infrastructure to mitigation efforts which generates suboptimal (climate-

neutral) private capital accumulation. The low level of K in turn leads to less

output and reduced tax revenue. Moreover, as the debt burden grows it be-

gins to further dampen investment in K, which peaks in the fifteenth period.

The falling per capita capital stock exhibits little impact until the terminal

condition K(t) = KT begins to bite. From the twenty-first period onwards,

preceding capital investment shortfalls are made up by shifting production

to the inefficient non-renewable resource. The extraction rate u begins to

ramp up from zero, reducing the stock R and generating CO2 emissions.

Under Strategy 2 the peak in private capital comes at a delay and the

terminal condition is not problematic since K(t) > KT for 3 < t < T . Under

this optimal allocation approach, overinvestment in mitigation infrastructure

is avoided and the savings are put toward productivity enhancements. This

generates a larger capital stock “buffer” allowing the economy to hold off

the extraction of R. As in Strategy 1, maximum K is reached as the debt
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Figure 1: Strategy 1 vs. 2, state and control variable trajectories
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burden approaches 1.5, and tax revenue is redirected toward debt servicing.

However, greater productivity and the lower stock of debt forestall this effect

in Strategy 2. When extraction does begin in the twenty-second period, it

merely reduces the rate at which K, the capital used for the production

of green energy, falls toward KT , rather than makes up for the previous

investment shortfalls seen in Strategy 1. Again, the higher stock of private

(green) capital has diminished the economy’s reliance on the carbon-emitting

non-renewable resource.

4.4 Homotopic Analysis of Au

Many of the model parameters remain uncertain and/or unobservable. This

limitation, common to all models, is particularly acute for IAMs due to

the multifaceted feedback effects between economic decision-making and cli-

matological impacts. To address the issue we apply homotopic parameter

variation to OCP(p) for several key parameters. In each case we use the

optimal selection of infrastructure allocations ν1, ν2, ν3 as they continue to

outperform arbitrarily fixed values.

First, we consider scenarios in which the non-renewable resource – fossil

fuel energy – generates output more efficiently than the generation of renew-

able energy by allowing Au to range from a high of 500 down to 50 (as used

in §4.3). Figure 2 plots the terminal values of welfare W (T ), CO2 concen-

tration M(T ), unextracted nonrenewable resource R(T ), and terminal debt

b(T ). Unsurprisingly, welfare rises monotonically as the efficiency of this
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input is increased. Looked at the other way, welfare falls when fossil fuel

energy becomes more costly to find and extract. The higher cost (viz. lower

productive efficiency) of u decreases incentives to extract it, meaning the

remaining stock of non-renewable resource rises from 0.2 for Au = 500 to

1.2 at Au = 50. At very low costs, the extraction rate is very inelastic, as

shown by the slow increase in R(T ) between Au = 500 and Au = 100. After

this point, the shift away from extraction rises rapidly as Au halves from

100 to 50. This pattern of extraction maps inversely to CO2 concentrations,

which fall slowly as Au → 100+, only to fall rapidly when extraction becomes

sufficiently costly (which is calibrated here at Au = 100).

The lower-right panel in Fig. 2 suggests why R(T ) rises in such a dis-

tinctly nonlinear fashion as Au falls. At a low efficiency (high cost) of u,

greater investment into K is supported through borrowed funds. For larger

Au, dependence on private capital K and productivity-enhancing infrastruc-

ture ν1 is lower because the cheaper non-renewable energy substitutes for

carbon-neutral K. Figure 3 confirms this interpretation: the optimal alloc-

ation proportion ν1 is 92% at Au = 500 versus 95% for Au = 50. In the

former case, when extraction of the non-renewable resource is expensive, less

infrastructure needs to be allocated toward adaptive projects: ν2 falls from

8% to less than 5%. That said, the overall welfare outcome, is greater when

Au is large, in spite of the rise in M . Also implied by Fig. 3, ν3 = 0 for all

values of Au. Overall, the above case of ν3 = 0 is not likely to give realistic

solutions since ν3 enters the control problem linearly, which gives rise to the
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so-called ‘bang-bang’ problem.

Figure 2: Terminal states for homotopy 50 ≤ Au ≤ 500
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Figure 3: Infrastructure allocations for homotopy 50 ≤ Au ≤ 500
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4.5 Homotopic Analysis of φ

Since the result of no infrastructural investments put toward mitigation ef-

forts is due to the linear relationship assumed by setting φ = 1. Recall,

Ṁ = γ u− µ(M − κM̃)− θ(ν3 · g)φ (4)

We now loosen this assumption of linearity to consider the mitigation expo-

nent over the range 0.2 ≤ φ ≤ 1, which should be interpreted as the rate

of diminishing returns to climate change mitigation efforts. Whereas ν3 = 0

for φ = 1 (which is likely to be cause by the aforementioned ‘bang-bang’

problem), we obtain ν3 > 0 for φ ≤ φ0 ≈ 0.88.

Figure 4 compares the optimal allocation of infrastructure expenditures

toward productivity-enhancement ν1, adaptation ν2, and mitigation ν3, as

well comparing the final social welfare W (T ) at each value of φ. The res-

ults show that, as the rate of return to mitigation efforts diminishes, the

impetus to reduce CO2 emissions rises with ν3 reaching 1.2% for φ = 0.2.

The rising mitigation share comes primarily at the (small) expense of tradi-

tional infrastructure, the allocation of g to which falls from 94% to just above

92.8%. The remaining difference (≈ 0.1%) comes from reduced adaptation

efforts. Note that as mitigation efforts are increased above nil, total social

welfare increases by approximately 6%. Figure 5 confirms that as φ falls,

the heightened mitigation effort helps reduce the final concentration of CO2

in the atmosphere. Moreover, and corresponding to the latter result, the
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Figure 4: Allocations and Terminal Welfare for homotopy φ ∈ [0.2, 1]
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The non-renewable resource’s efficiency index is set at Au = 150.

total amount of non-renewable resources extracted is lower (R(T ) higher) as

φ falls.

4.6 Homotopic Analysis of Au for φ = 0.2

The unambiguous improvement to welfare and CO2 concentration reduction

for φ = 0.2 found above assumed Au = 150. To test whether the results from

§4.5 were contingent on that efficiency index, we again perform a homotopy

on Au this time specifying a concave mitigation term in (4) at φ = 0.2.

As before we find that terminal welfare W (T ) increases when the efficiency

of u falls (viz. the cost of extraction rises), infrastructural allocations to

productivity ν1 rise as adaptive efforts ν2 fall (see Fig. 6). However, with

φ = 0.2 mitigation efforts ν3 are no longer nil, although they remain between
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Figure 5: Terminal Resources and CO2 for homotopy φ ∈ [0.2, 1]
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The non-renewable resource’s efficiency index is set at Au = 150.

1.0% and 1.7% of g. Interestingly, allocations mitigation are not monotonic

over Au. Over the ‘high cost’ range found in §4.4, Au ∈ [50, 100], ν3 in Figure

6 becomes increasingly desirable as extraction costs rise (Au falls). For lower

costs, Au > 100, ν3 falls as extraction costs increase (Au falls) implying

mitigation efforts must ramped up when fossil fuel energy is cheap in order

to counter the increase in CO2 emissions.

This interpretation of ν3 is supported by the terminal states plotted in

Figure 7. The terminal atmospheric carbon concentrations rise rapidly over

Au (i.e., as extraction costs fall) and then stabilize above Au = 100 – aided in

part by the increase in ν3. Again, as the productive efficiency of u is increased,

the extraction rate rises (R(T ) falls) nonlinearly and public debt becomes

less relied upon as production shifts away from private capital toward non-

renewable resources. Total infrastructure g also rises rapidly over the initial

low range of Au and then stabilizes for at values above 100.
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Figure 6: Allocations and Welfare for homotopy Au ∈ [50, 500], φ = 0.2
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Figure 7: Terminal states for homotopy 50 ≤ Au ≤ 500 for φ = 0.2

 1.6

 2

 2.4

 2.8

 50  200  350  500
efficiency index  Au

Terminal concentration  M(T) 

 0

 0.5

 1

 1.5

 2

 50  200  350  500
efficiency index  Au

 Terminal debt  b(T) 

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 50  200  350  500
efficiency index  Au

 Terminal resource  R(T) 

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 50  200  350  500
efficiency index  Au

 terminal public capital  g(T) 

24



Figure 8 shows the full trajectories of private capital K, consumption

C, carbon concentrations M , the extraction rate u for three representat-

ive values of Au = 100, 200, 500. In the extreme case of Au = 500 private

capital is driven to zero for the majority of periods between the initial and

terminal points of K0 and KT , meaning production is driven entirely by the

non-renewable resource. This result does not seem economically reasonable.

The motivation to discard this parameterization is even stronger since the

trajectories of M and u for Au = 500 and Au = 200 are nearly indistinguish-

able.

For an efficiency index of 150, K falls slightly from its initial value and

fluctuates slightly before converging to KT . Conversely, for Au = 100, capital

stock rises rapidly, peaks and then falls unevenly to KT as was the case in

§4.3 for Au = 50, φ = 1. As in §4.4, the extraction rate for Au = 100, 200

reaches the maximal level near the end of the projection, with the less efficient

scenario reaching the peak earlier. However, with φ = 0.2 the lower efficiency

index scenario now leads to a lower total and terminal CO2 level as mitigation

efforts are no longer held at zero.

Further trajectories for φ = 0.2 are presented in Figure 9. The total stock

of infrastructure g is little changed under three Au scenarios. As suggested

by the trajectory of u in Fig. 8, the remaining stock of the non-renewable

resource R is greatest for Au = 100, but only by a small margin over the

Au = 200 scenario. Conversely, the tax revenue trajectory eP fluctuates

far more under Au = 100 than the other scenarios. In the former case,
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Figure 8: Selected trajectories for φ = 0.2 with Au = 100, 200 and 500
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eP leads the fluctuations in u, falling before u rises and vice versa. This

tendency supports the argument made above that greater reliance on the

non-renewable resource reduces the need for fiscal deficits.

4.7 Homotopic Analysis of ρ for φ = 0.2

Finally, we consider the homotopy of ρ, the pure discount rate. There has

been much debate over the correct intertemporal discount rate that should

be used in climate change economics (e.g., Stern, 2007). While we do not

weigh in on that debate here, it is informative to investigate the IAM results

under various discount rate assumptions. Figure 10 shows that terminal wel-

fare W (T ) falls smoothly as the discount on future outcomes rises. Although

the falling allocation of infrastructure to mitigation ν3 as ρ rises is expected,
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Figure 9: Further trajectories for φ = 0.2 with Au = 100, 200 and 500
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it is interesting to note that the shares of ν1 and ν2 move in opposite direc-

tions. In other words, the savings from ν3 are not shared between productive

infrastructure and adaptation. Instead, for higher discount rates, mitigation

efforts are increased while ν1 falls by a greater amount that ν3.

The reason for this behaviour is in Figure 11. As the economy discounts

future outcomes at a higher rate, the present cost of non-renewable resource

extraction falls and thus the rate of extraction rises. The bottom panel in

Fig. 11 indicates that indeed the remaining stock of non-renewable resource

is driven down as ρ is increased. And, as in all other cases, when u rises

the final stock of CO2 concentration M(T ) rises. It is also notable that a

higher discount rate is associated with a lower level of public infrastructure

available to be used for any purpose. These results indicate that, indeed,
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Figure 10: Allocations and Welfare for homotopy ρ ∈ [0.02, 0.1], φ = 0.2
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the discount rate we choose to inform climate change policy can have a great

effect on the trajectory ultimately followed.

5 Conclusion

Following a review of recent policy developments and modelling approaches

to climate change economics, the paper developed an extended integrated

assessment model explicitly accounting for the extraction of non-renewable

resources and the phasing in of renewable energy. Another extension of

the IAM framework is to include public sector policies concerning optimal

decisions of both revenue and tax expenditures. Although the focus was on

climate policy financing through taxation, future research could elaborate on
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Figure 11: Terminal states for homotopy ρ ∈ [0.02, 0.1] for φ = 0.2
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the financing mechanisms through climate bonds.16

The IAM was solved using the AMPL algorithm which enabled us to

maintain all of the system’s nonlinearities and dynamic interactions. A par-

ticularly useful feature of this methodology is the ability to optimally determ-

ine the allocative variables ν1, ν2, ν3 in order to indicate the best policy mix

for addressing the challenges of climate change. In section §4.3 we showed

endogenously selected allocations consistently outperformed ex ante para-

meterizations. We then considered parameter homotopies under a strategy

of optimally selecting the allocation shares to traditional, adaptive and cli-

mate change mitigating expenditures.

Given that green energy is already phased in through the accumulation

16In this context, a recent discussion of proposals for central banks to accept climate
bonds as collateralizable securities is available in Flaherty et al. (2016).
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of private capital, the model consistently found that over 90% of infrastruc-

tural investment should be geared toward productivity-enhancing invest-

ments. The phasing in of green energy is also supported by the fact that

private capital enhancements ν1g are, by design, enhancements for carbon-

neutral production. In other words, the model assumes that no public funds

are used to directly support the extraction of CO2-emitting resources.

Sections §4.4-4.6 consider the homotopy of Au and φ, respectively the pro-

duction efficiency index for the non-renewable resource and the exponent on

mitigation efforts. The results demonstrated that greater efficiency of CO2-

generating resources incentivizes their use, thereby increasing carbon emis-

sions. Increasing the input level of u also led to a reduced reliance on debt to

finance ν1. This result accords with the stylized fact that resource-dependent

economies typically have large fiscal surpluses when primary products are in

high demand. On the other hand as the efficiency of CO2 generating en-

ergy declines, the results are reversed: more of this resource is left in the

ground and cumulative CO2 emissions are lower. The exponent φ proved to

be crucial. As the concavity of mitigation efforts rose (lower φ), the level of

mitigation efforts increased monotonically. One interpretation of this find-

ing is that if mitigation is seen to be relatively inexpensive (i.e., fixed linear

impacts on Ṁ), then agents may continuously hold off on investing in mit-

igation.17 We also considered the homotopy of ρ, the pure discount rate. As

17Another issue is that when the control enters linearly, then the corresponding control
variable (in this case mitigation effort) is driven to zero. This could be the result of a
‘bang-bang’ solution.
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expected total social welfare was lower and CO2 concentrations higher when,

ceteris paribus, the discounting of future outcomes rose.

Overall, the IAM developed here is an advancement both in terms of the

solution algorithm employed and in its use of novel dynamics. As mentioned,

the modelling of non-renewable resource extraction and detailed public sector

policies on climate change are new features in the IAM literature. In addition

we have treated the damage function of climate change as impacting social

welfare directly, as opposed to indirectly through reductions in the rate at

which output is produced. While neither approach is perfect, we have em-

ployed the direct-utility impact version because we believe it is better able to

capture the many physical, ecological and societal losses that may be induced

by unabated climate change.

Finally, a necessary extension of the climate change policies studied here is

consideration of the optimal financing sources, including policies for burden

sharing. For example, standard IAMs place the cost and implementation

burden of financing climate policies on the current generation. Indeed, the

extended IAM developed here posits public sector financing of climate action

through current tax revenues and expenditures. As an additional extension

to the framework, we can consider the extent to which climate policies can

be funded by both a carbon tax and the issuing of climate bonds – the latter

being repaid by future generations. For more specific work on this type of

burden sharing between current and future generations, see Sachs (2014),

Flaherty et al. (2016) and Gevorkyan et al. (2016).
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