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Abstract

I show that under-reaction is a robust response to model misspecification rewarded
by financial markets, rather than an “irrational” attitude that leads to extinction.
Under-reacting prediction schemes guarantee predictions as accurate as Bayes’ in well-
specified learning problems and beat Bayes’ in many misspecified learning environ-
ments. Therefore, if a Bayesian agent and an under-reacting agent with the same
information trade in the same market, there are no paths on which the under-reacting
agent loses all his wealth against the Bayesian, while there is a large class of mis-
specified learning settings in which the Bayesian agent loses all his wealth against the
under-reacting agent almost surely.
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1 Introduction

A long-standing conjecture about learning and financial markets is that “rational”
Bayesian agents eventually drive out of the market “irrational” non-Bayesian agents
who uses the same information and make asymptotically different predictions.

Theoretically, this conjecture has been investigated and confirmed in well-specified
learning problems (Sandroni, 2000; Blume and Easley, 2006), i.e., under the assumption
that the Bayesian agents eventually learn the truth. However, little work allowing for
misspecified learning environments has been done.1

A learning problem is misspecified if the true data generating problem cannot be
learned because it is subjectively believed impossible by the agent. While well-specified
decision problems are theoretically appealing, we have to recognize that many, if not
most, real-world decision problems are misspecified —“all models are wrong, but some

1The work of (Sandroni, 2005) lies between the well-specified and misspecified settings because it focuses
on a specific class of learning problems in which the Bayesian agent cannot learn the truth because the true
data generating process is not kept the same over time, but a version of Wald (1947) complete class theorem
holds.
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are useful ” Box (1976); sure enough, the absence of a consensus on what is the “true”
model of stock market returns indicates that investment decisions are made in a mis-
specified learning environment. In a misspecified-learning environment, the Bayesian
paradigm is not justified because internal consistency with an incorrect premise (a
model support that does not contains the truth) cannot guarantee learning the most
useful model in the support (Timmermann, 2006; Grünwald et al., 2017; Massari, 2019;
Csaba and Szoke, 2018); so, it is crucial to verify if it is still the case that Bayes’ rule
should have the predominant role among all learning rules also in settings in which the
learning problem might be misspecified.

In this paper I focus on under-reaction, an heuristics widely documented in empiri-
cal finance (Barberis et al., 1998; Cutler et al., 1991; Giglio and Kelly, 2018). I present
a theoretical model which allows for misspecified learning and show that under-reaction
reflects a prudent attitude rewarded by financial markets, rather than a “transient and
irrational” behaviour. Given a Bayesian and an under-reacting agent with the same
information, there are no paths on which the under-reacting agent loses all his wealth
against the Bayesian, while there is a large class of probabilities such that the Bayesian
agent loses all his wealth against the under-reacting agent almost surely. The reason
is that under-reacting prediction schemes guarantee predictions as accurate as Bayes’
in well-specified learning problems and beat Bayes’ in many misspecified learning en-
vironments.

In a standard general equilibrium model with complete markets (Sandroni, 2000;
Blume and Easley, 2006), I study the consumption-share dynamics between a Bayesian
(B) and a non-Bayesian (NB) agent who under-reacts to information. The two agents
have identical information as they share the same prior support and observe the same
path of realizations. Agent NB under-reacts to information: his beliefs are consistent
with the axiomatization of Epstein (2006) and Epstein et al. (2008) where an agent is
self-aware of her biases and fully anticipates her updating behavior when formulating
plans.

Consider an agent who is trying to learn the true parameter in a set Θ. Updating
of beliefs in response to observations {σ1, ..., σt} leads to the process of posteriors
{µt},where each µt is a probability measure on Θ. Bayesian updating leads to the
process

µt+1 = BU(µt+1;σt+1)

where BU(µt+1;σt+1) := µB(·|σt+1) denotes the Bayesian update of µ(·|σt) upon ob-
serving state σt+1 (Definition 2). A prediction rule under-reacts to information (has
prior-bias) with respect to Bayes’ if the weights given by its predictive distribution are
a convex combination between the prior weights and the Bayesian posterior weights
calculated using the same information

Definition 1. A prediction rule under-reacts to information if its process of pos-
teriors {µt} is

µt+1 = (1− α)µt + αBU(µt+1;σt+1)

where α ∈ (0, 1).

An updating rule satisfying Definition 1 can be interpreted as attaching too much
weight to prior beliefs µt and hence under-reacting to observations. So, the parameter
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α regulates the amount of under-reaction of agent NB. To lower values of α correspond
greater under-reaction.

In the market setup I adopt, an agent vanishes if there is another agent who is more
accurate (Sandroni, 2000; Massari, 2017). An agent who under-reacts to information
never vanishes against a Bayesian agent with the same information because in all cases
in which agent B learns the truth, NB also learns the truth at a comparable rate.
Conversely, a sufficient condition for a Bayesian agent to vanish against an under-
reacting agent is that the learning problem is misspecified in such way that the empirical
distribution (true probability, if draws are i.i.d.) is not in the prior support and belongs
to its convex hull. While the Bayesian agent is as accurate as the most accurate model
in the support (Berk, 1966), the under-reacting agent is more accurate than the most
accurate model in the support because its predictions are a non-degenerate mixture of
the most accurate models in the support.

My finding is of particular interest to the portfolio selection literature, where the
true process of stock returns is unknown, and the evidence in favor of Bayesian methods
is mixed. While there is a vast literature supporting Bayesian methods for portfolio
selection problems (Klein and Bawa, 1976; Frost and Savarino, 1986), equally rich is the
set of non-Bayesian approaches for robust portfolio allocation rules (DeMiguel et al.,
2007; Garlappi et al., 2006; Goldfarb and Iyengar, 2003).

My result complements and strengthens the arguments in favour of the “robust”
methods proposed in the portfolio selection literature. It complements them by point-
ing to model misspecification, rather than parameter estimation error, as the reason
for the sub-optimal behaviour of Bayesian methods. It strengthens them because of
the known magnification effect that model misspecification has on parameter estima-
tion error. In misspecified learning problems, the Bayesian posterior convergence can
be significantly slower than in well-specified problems (Grünwald and van Ommen,
2014), demanding of special consideration in the use of model selection criteria (Bal-
asubramanian, 1997) and in the use of Bayesian methods for predictions (Grünwald
and Langford, 2007; Grünwald, 2012). Furthermore, my result offers an intuitive ex-
planation of the difficulties often found in exploiting under-reaction anomalies with
practical trading strategies. In terms of portfolio returns, it is hard to take advantage
of under-reaction to information without a radical change of the underlying statisti-
cal model because it is a robust response to model misspecification, rather than an
irrational deviation from a correct learning procedure.

In section 3, I prove a series of results about the relative accuracy between Bayes’
rule and the prediction schemes that under-react to information. These results nest
those of Epstein et al. (2008, 2010) for well-specified learning environments and gen-
eralize them to potentially misspecified environments. In a well-specified learning en-
vironment, Epstein et al. (2010) shows that under-reaction is a transient phenomenon
because eventually it delivers accurate predictions as Bayes’ — under-reacting rules
weakly merge (Kalai and Lehrer, 1994) to the truth. Here, I show that their conclusion
critically depends on the assumption that the learning problem is well specified; it does
not hold when we allow for misspecification. For every finite prior support, there is a
generic set of true parameters for the data generating process such that agent B’s and
agent NB’s predictions remain distinct and agent B vanishes because is less accurate
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than agent NB. In these circumstances, under-reaction is a long-lasting phenomenon
because the market reflects the beliefs of the under-reacting agent in every distant
future.

2 The model

I consider an infinite horizon Arrow-Debreu exchange economy with complete markets.
Time is discrete, indexed by t, and begins at date t = 0. In each period t ≥ 1, the
economy can be in one of S mutually exclusive states, S. The set of partial histories
until t is the Cartesian product Σt = ×tS and the set of all paths is Σ := ×∞S.
σ = (σ1, ...) is a representative path, σt = (σ1, ..., σt) is a partial history until period
t, and Ft is the σ-algebra generated by the cylinders with base σt. By construction
(Ft)∞t=0 is a filtration and F is the σ-algebra generated by their union. P denotes the
true measure on (Σ,F); unless stated, I make no assumptions on P . For any probability
measure ρ on (Σ,F), ρ(σt) := ρ({σ1× ...×σt×S×S× ...}) is the marginal probability

of the partial history σt, while ρt := ρ(σt|) := ρ(σt)
ρ(σt−1)

is the conditional probability of

the generic state σt given σt−1, so that ρ(σt) =
∏t
τ=1 ρ(στ |).

Next, I introduce a number of economic variables with time index t. All these
variables are adapted to the information filtration (Ft)∞t=0.

The economy has two agents indexed by i: a Bayesian (B) and a non-Bayesian
(NB) with common discount factor β.2 For all paths σ, each agent i is endowed with
a stream of the consumption good, (eit(σ))∞t=0. Each agent’s objective is to maximize
the stream of discounted expected utility he gets from consumption. Expectations are
computed according to agent beliefs pi, a measure on (Σ,F). Naming q(σt) the date
t = 0 price of the asset that delivers one unit of consumption in event σt and none
otherwise, agent i = B,NB maximization reads:

max
(cit(σ))∞t=0

Epθ

[ ∞∑
t=0

βtui(cit(σ))

]
s.t.

∑
t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0.

A competitive equilibrium is a sequence of prices and, for each agent, a consumption
plan that is preference maximal on the budget set, and such that markets clear in
every period: ∀(t, σ),

∑
i=N,NB e

i
t(σ) =

∑
i=N,NB c

i
t(σ). Assumptions A1-A3 below

are standard in the market selection literature to ensure the existence of a competitive
equilibrium (Peleg and Yaari, 1970).

A1 For all agents i ∈ I the utility ui : R+ → [−∞,+∞] is C1, strictly concave,
increasing, and satisfies the Inada condition at 0; that is, limc↘0 u

i(c)′ =∞.

A2 The aggregate endowment is uniformly bounded from above and away from 0:

∞ > F > sup
t,σ

∑
i=B,NB

eit(σ) > inf
t,σ

∑
i=B,NB

eit(σ) > f > 0.

2I assume a common discount factor to guarantee that the market selects for the most accurate agent(s)
rather than for those that save the most.
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A3 (i) For all agents i = B,NB and for all (t, σ), pi(σt) > 0⇔ P (σt) > 0.
(ii)∃ε > 0 such that for all agents i = B,NB and for all (t, σ), pi(σt|) > ε.

In our learning environment, a sufficient condition for A3 to hold is that the (common)
prior support of the two agents only contains strictly positive measures.

2.1 Beliefs

The Bayesian agent and the under-reacting agent share identical information. Adopting
the Bayesian terminology, at time zero they believe that states are i.i.d. according to
multinomial distributions πθ parametrized by K vectors of parameters θ ∈ ∆|S|. Both
agents have an identical full-support, time-zero prior distribution µ0 on the set of these
parameters Θ = {θ1, ...θK}.3 Furthermore, both agents observe the same path σt.

The following Definitions characterize the dynamics of the beliefs of agents B
(Bayes’ rule) and agent NB. Proposition 1, below, verifies that indeed agent NB’s
beliefs under-react to information according to Definition 1.

Definition 2. The next period beliefs of agent B evolve according to Bayes’ rule:

∀(t, σ),

{
pB(σt|) =

∑
θ∈Θ πθ(σt)µ(θ|σt−1)

µB(θ|σt) = πθ(σt)
pB(σt|)µ

B(θ|σt−1)
.

where µ(θ|σt−1) := πθ(σt−1)µ0(θ)∑
θ∈Θ πθ(σt−1)µ0(θ)

is the weight that the Bayesian prior distribution

gives to model θ, upon observing σt−1.

Definition 3. Let α ∈ (0, 1), the next period beliefs of agent NB evolve as follow:4

∀(t, σ),


pNB(σt|) =

∑
θ∈Θ πθ(σt)µ

NB(θ|σt−1)

µNB(θ|σt) = pθ(σt|)
pNB(σt|)µ

NB(θ|σt−1)

pθ(σt|) = (1− α)pNB(σt|) + απθ(σt)

.

Proposition 1. For all α ∈ (0, 1), pNB under-reacts to information:

∀(σ, t),∀θ ∈ Θ, µNB(θ|σt) = (1− α)µNB(θ|σt−1) + αµB(θ|σt).

The parameter α regulates the amount of under-reaction of agent NB. Lower
values of α correspond to higher under-reaction. Notably, with α = 1 Definitions 1 and
3 coincide with Bayes’ rule.

2.2 Agents accuracy and survival

In this section, I remind the reader of standard definitions of accuracy in statistics
and their implications in term of agents’ survival. The asymptotic fate of an agent is

3All results remain true for heterogeneous full-support prior distributions on the same finite support.
4Inspection of Definition 3 reveals that pNB belong to the class of market probability introduced by

Massari (2018); specifically, they correspond to the evolution of the risk neutral probability of an economy
in which agents have log utility and behavioural beliefs described in Dindo and Massari (2017).
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characterized by his consumption-shares as follows.

Definition 4. Agent i vanishes on path σ if limt→∞ c
i
t(σ) = 0 on σ, he survives on

path σ if lim supt→∞ c
i
t(σ) > 0 on σ.

I rank agents’ accuracy according to their likelihood and, more coarsely, according
to their average (conditional) relative entropies.

Definition 5.

• Agent i is more accurate than agent j on σ if lim pj(σt)
pi(σt)

→ 0.

• Agent i is averagely more accurate than agent j if d̄(P ||pi) < d̄(P ||pj), P -a.s.;
where

d̄(P ||p) := lim
t→∞

1

t

t∑
τ=1

d(Pτ ||pτ ) = lim
t→∞

1

t

t∑
τ=1

EP

[
ln
P (στ |)
p(στ |)

]
,

is the average (conditional) relative entropy from p to the true probability P .5

Using the average (conditional) relative entropies to rank agents’ accuracy is the
standard in the market selection literature since Blume and Easley (1992) because it
can be readily used to determine a sufficient condition for an agent to vanish.

Proposition 2. Sandroni (2000): under A1-A3, agent i vanishes P-a.s. if agent j is
averagely more accurate.

Conditions that rely on average accuracy, however, are unable to deliver the neces-
sary part of Proposition 2 even in a two-agent economy. In general, having two agents
with identical average accuracy does not imply that both agents survive because the
average (conditional) relative entropies are too coarse to discriminate between log-
likelihoods ratios that diverge at rates slower than t. This problem is particularly
salient in learning environments in which agent beliefs converge to the same mod-
els because the averaging factor masks differences in the converging rate (Blume and
Easley, 2006; Massari, 2013).

In order to precisely characterise agents’ survival I rely on Massari (2017)’s neces-
sary and sufficient condition for an agent to vanish. In a two-agent economy, Massari
(2017)’s analysis implies that an agent survives on a path σ if and only if he is more
accurate than the other agent.

Proposition 3. Under A1-A3, agent NB survives on path σ with consumption shares

uniformly bounded away from zero if and only if pNB(σt)
pB(σt)

is strictly positive in every

period:

∃η > 0 : ∀t, p
NB(σt)

pB(σt)
> η on path σ ⇒ ∃η′ > 0 : ∀t, cNB > η′ on path σ.

5The relative entropy d(Pt||pt) is uniquely minimized at pt = Pt, strictly convex, and d(Pt||pt) =
d̄(P ||p) P -a.s. whenever P and p are i.i.d. measures. The average relative entropy is an approximation
of the average likelihood ratio that holds almost surely according to the true probability. If P attaches zero
probability to some states, I adopt the convention 0 ln 0 = 0.
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In this paper I make use of both results: Proposition 2 to show that agent B
vanishes almost surely according to many true data generating process in misspecified
learning problems (Theorem 4); Proposition 3 to show that the NB agent survives on
every equilibrium path (Theorem 3), and thus for every true data generating process.

3 Relative accuracy of pNB and pNB

In this section, I present results characterizing the relative accuracy of beliefs pB and
pNB. Theorem 1 shows that the likelihood ratio between pNB and pB is universally
(i.e., on every path) uniformly bounded away from zero; Theorem 2 provides sufficient
conditions on the true probability such that pNB is averagely more accurate than pB,
so that the likelihood ratio between pB and pNB converges to zero P ∗-almost surely
(Corollary 2).

I start with two lemmas to aid intuition. In Lemma 1 I apply the chain rule to
obtain the analytic form of the unconditional probabilities of Definitions 2 and 3. It
shows that pNB can be interpreted as being a Bayesian mixture model on the non-i.i.d.
probabilities pθ, rather than πθ. Therefore, standard Bayesian results, such as the
universal bounds on the right, hold for the Bayesian mixture model pRN with support
{pθ1 , ..., pθK}. When, α = 1, πθ = pθ (Definitions 2 and 3 coincide) and the second line
holds.

Lemma 1. Let pθ(σ
t) :=

∏t
τ=1

(
(1− α)pNB(στ |) + απθ(στ )

)
, then, for all α ∈ (0, 1],

∀(t, σ), pNB(σt) =
∑
θ∈Θ

pθ(σ
t)µ0(θ) ∈

[
max
θ∈Θ

pθ(σ
t)µ0(θ),max

θ∈Θ
pθ(σ

t)

]
; (1)

∀(t, σ), pB(σt) =
∑
θ∈Θ

πθ(σ
t)µ0(θ) ∈

[
max
θ∈Θ

πθ(σ
t)µ0(θ),max

θ∈Θ
πθ(σ

t)

]
. (2)

Bounds 1 and 2 highlight that the key step to discussing the relative accuracy
between pNB and pB is to characterize the relative accuracy of models pθ against
models πθ. Lemma 2 below provides this result. It shows that, on every path, and for
every θ, the likelihood ratio between pθ and πθ is uniformly bounded away from zero.

Lemma 2.

∀α ∈ (0, 1],∀(t, σ), ∀θ ∈ Θ, pθ(σ
t) ≥

(
min
θ∈Θ

µ0(θ)

) 1
α
−1

πθ(σ
t).

Finally, I combine the universal uniform bounds of Lemmas 1 and 2 to show that
there are no paths on which the likelihood ratio between pNB and pB converges to zero.

Theorem 1.

∀α ∈ (0, 1], ∀(t, σ),
pNB(σt)

pB(σt)
≥
(

min
θ∈Θ

µ0(θ)

) 1
α

> 0.
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Theorem 1’s uniform bound holds on all paths σ ∈ Σ. Thus, it represents the
maximal accuracy-cost of under-reaction. For example, when the learning problem is
correctly specified, both pB and pNB converge to the truth and the likelihood ratio
remains greater than zero because the convergence rate of pB is only marginally faster
than that of pNB. As intuition suggests, to smaller values of α correspond higher under-
reaction and thus, lower worst-case accuracy against the Bayesian agent. Clearly, the
bound of Theorem 1 also holds on those paths on which pNB(σt) or pB(σt) priors do
not converge to a unique model. These are the most interesting paths because pNB(σt)
is averagely more accurate than pB(σt) on those paths. Next, I provide a sufficient
condition on P that guarantees that the pNB prior never concentrates on a unique
model so that pNB is averagely more accurate than pB.

Theorem 2 shows that as long as the learning problem is misspecified in such a way
that the parameters of the empirical distribution (true probability if states are i.i.d.)
lie in the convex hull of the support, there is an ᾱ such that pNB is averagely more
accurate than pB for all α ∈ (0, ᾱ].

. CAMBIARE SUFFICIENTR CONDITIONS COND 2

Theorem 2. Assume that the true probability is such that the empirical distribution
of states, P ∗, exists, and let θ∗ be its vector of parameters;6

θ∗ ∈ Conv(Θ) \Θ⇒ ∃ᾱ : ∀α ∈ (0, ᾱ), d̄(P ∗||pB) > d̄(P ∗||pNB) P ∗-a.s.; (3)

specifically, let θ̂ ∈ argminθ∈Θ d̄(Pθ∗ ||πθ),

ᾱ := argmax
α∈(0,1)

: d̄(Pθ∗ ||πθ̂) > min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ). (4)

In order to have d̄(P ∗||pB) > d̄(P ∗||pNB) P ∗-a.s., I need a condition that prevents
pNB prior from ever concentrating on a unique model.7 Condition 4 of Theorem 2
precisely guarantees that concentration does not occur P ∗-a.s.. By standard Bayesian
argument (Berk, 1966; Marinacci and Massari, 2019), a Bayesian mixture concentrates
on the model on its support with the lowest average accuracy, when this model is
unique (See Lemma 7 for a proof that applies to this setting). If pNB prior were to
concentrate on a model pθ, then pNB → pθ = πθ and its average accuracy would be
higher than the average accuracy of another model in the support because, by condition
(4), d̄(Pθ∗ ||πθ̂) > minθ∈Θ\θ̂ d̄(Pθ∗ ||(1 − α)πθ̂ + απθ); a contradiction. Condition 3,

θ∗ ∈ Conv(Θ) \ Θ , is easy to verify, and it is sufficient to guarantee the existence of
such ᾱ and θ.

I conclude with two corollaries, Corollary 1 shows that if the learning problem is
correctly specified, then NB merges with the truth. That is, NB converges to the
truth qualitatively as fast as B does. This result strengthens the weak merging result
of (Epstein et al., 2010)

6If states are i.i.d. with true probability Pθ0 , the empirical distribution conicides with the true distribution
almost surely, Pθ∗ = Pθ0 ; so, Pθ0 can be replaced for Pθ∗ in conditions 3 and 4.

7Inspection of Definitions 2 and 3 shows that if pNB prior concentrates on a unique model pθ, then it
must be the case that limt→∞ pNBt = limt→∞ pθ,t = πθ = limt→∞ pBt — where the last equality follows is
proven in Lemma 7. So that pNB is averagely as accurate as pB whenever it concentrates on a unique model.
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Corollary 1. For all α ∈ (0, 1], for all θ ∈ Θ, pNB merges with πθ, πθ−almost surely.

Proof.

θ ∈ Θ⇒ πθ is absolutely continuous with respect to pB

⇒ pB merges with πθ, πθ-a.s.;

∀σ, p
NB(σt)

pB(σt)
>︸︷︷︸

By Theorem 1

0⇒ pB(σt) is absolutely continuous with respect to pNB , pB-a.s.;

thus, θ ∈ Θ⇒ πθ is absolutely continuous with respect to pNB

⇒ pNBmerges with πθ, πθ-a.s..

Corollary 2 shows that under the conditions of Theorem 2, the likelihood ratio
between pB and pNB converges to zero.

Corollary 2. Under the conditions of Theorem 2, pB(σt)
pNB(σt)

→ 0 P ∗-a.s..

Proof. By Theorem 2, d̄(P ∗ ||pB) > d̄(P ∗||pNB) P ∗-a.s.⇒ pB(σt)
pNB(σt)

→ 0 P ∗-a.s., by the strong

law of large number for martingale differences (See the application in Lemma 3).

4 Agents’ survival

In this section, I present two results showing that agent NB has an evolutionary
advantage over agent B. First, Theorem 3 shows that there are no paths (and thus
no true data generating process) on which agent NB vanishes against agent B. It is
impossible for a Bayesian agent to drive out of the market an under-reacting agent with
the same information. Furthermore, the consumption share of agent NB is guaranteed
to remain strictly positive.

Theorem 3. Under A1-A3, on every path σ ∈ Σ and for all α ∈ (0, 1], agent NB
survives. Furthermore, agent NB, consumption is uniformly bounded away from 0.

Proof.

By Theorem 1, ∀σ ∈ Σ,∀t, p
NB(σt)

pB
≥
(

min
θ∈Θ

µ0(θ)

) 1
α

;

thus, the sufficient condition for an agent to survive with positive consumption-share of Propo-

sition 3 is satisfied by agent NB on every path.

Theorem 3 tells us that it is impossible for an under-reacting agent to lose all his
wealth against a Bayesian agent with the same information. If the learning problem
is correctly specified, both agents learn the true model at a comparable rate and their
beliefs become identical. If the learning problem is misspecified, the Bayesian agent
(generically) learns what is the most accurate model in its support, while the NB agent’s
predictions might remain a combination of some models in the support. Irrespective of
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the path of realizations, agent NB’s beliefs are guaranteed to be at least as accurate
as those of agent B (Theorem 1).

Next, Theorem 4 shows that there are many data generating processes, P , such
that agent B vanishes against agent NB P -a.s.. If the learning problem is misspecified
and the truth is such that the empirical distribution it generates has parameters that
belong to the convex hull of the models in the support, then there is a level for the
under-reaction parameter that, if crossed, guarantees that agent NB dominates over
agent B. When the empirical distribution is a convex combination of two models in the
support, agent NB makes predictions that are more accurate than agent B’s because
its prior remains non-degenerate due to under-reaction.

Theorem 4. Under A1-A3, let P ∗ be the empirical distribution and θ∗ be its vector
of parameters;

θ∗ ∈ Conv(Θ) \Θ⇒ ∃ᾱ : ∀α ∈ (0, ᾱ) agent B vanishes P ∗-a.s..

Specifically, let θ̂ ∈ argminθ∈Θ d̄(Pθ∗ ||πθ),

ᾱ := argmax
α∈(0,1)

: d̄(Pθ∗ ||πθ̂) > min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ).

Proof. By Proposition 2, agent B vanishes if d̄(P ||pNB) < d̄(P ||pB), P -a.s.;

θ∗ ∈ Conv(Θ) \Θ,∃ᾱ : α ∈ (0, ᾱ) ⇒︸︷︷︸
By Theorem 2

d̄(P ||pNB) < d̄(P ||pB), P -a.s..

Theorems 4 tells us that the survival chances of agent B are lower against NB
agents whose underreaction to information is greater. The smaller the α parameter,
the larger is the set of true probabilities (and thus sequences) in which the agent B
vanishes.

Discussion
Theorem 3 and 4 tell us that an under-reacting agent cannot vanish against a Bayesian
with the same information, and that there are generic cases of model misspecification
in which the Bayesian agent vanishes against an underreacting agent, respectively.
Proposition 4, below, shows that agent B vanishes against agent NB precisely in those
cases in which the true probability is such that agent NB prior does not concentrate
on a unique model. So a non-Bayesian dynamics of prices is a possible evolutionary
outcome of model misspecification, rather than a transient phenomenon.

Proposition 4. Under A1-A3, agent B vanishes if the beliefs of agent NB never
settle on a unique model.

Proof. By Proposition 2, agent B vanishes if d̄(P ||pNB) < d̄(P ||pB), P -a.s..
I have shown that

d̄(P ||pNB) ≤︸︷︷︸
By Lemma 3

min
θ∈Θ

d̄(P ||pθ) <︸︷︷︸
By Lemma 4

min
θ∈Θ

d̄(P ||πθ) =︸︷︷︸
By Lemma 7

d̄(P ||pB).
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Figure 1: pNB dynamics with [π1(u), π2(u)] = [.4, .7], uniform time zero prior and mixing coefficient
α = .2. The probability weights never find a resting points and the resulting probabilities remains closer to
the truth than the most accurate model in the support, π1, in most periods.

Where the second inequality is strict because, by assumption, “the beliefs of agent NB never

settle on a unique model”.

4.1 Example

Let agents B and NB have log utility and symmetric endowment. In every equilibrium
path it must be the case (by the FOC) that

∀(t, σ),
cNBt (σ)

cBt (σ
=
pNB(σt)

pB(σt)

cNB0

cB0

so that agent NB survives on path σ if and only if he is more accurate than agent

B : lim sup pNB(σt)
pB(σt)

> 0.

Suppose S := {u, d} with true probability Pθ0(u) = .5, and that the two agents have
identical prior support Θ := {πθ1 , πθ2} with πθ1(u) = .4 and πθ2(u) = .7 and uniform
time zero prior µ0(θ1) = .5 = µ0(θ2). Because the first model is averagely more
accurate — d̄(Pθ∗ ||πθ1) < d̄(Pθ∗ ||πθ2) — standard results in Bayesian learning (Berk,
1966) tell us that the Bayesian posterior converges almost surely (exponentially fast)
to a Dirac on πθ1 , so that d̄(Pθ∗ ||pB) = d̄(Pθ∗ ||πθ1). Conversely, with α = .2 < 2/3 = ᾱ
agent NB’s beliefs do not converge to any parameter and his predictions for state
u, pNB(ut|) spend most of the periods in the interval (.4,.6). So, agent NB makes
predictions that are strictly more accurate than πθ1 in most periods (see Fig 1 for a
simulation). Thus, agent NB’s beliefs are averagely more accurate than agent B’s —
d̄(Pθ∗ ||pNB) < d̄(Pθ∗ ||πθ1) = d̄(Pθ∗ ||pB)— and agent B vanishes. In the long run, prices
reflects agent NB’s beliefs, which are not Bayesian.

11



5 Conclusion

Under-reaction is not a transient phenomenon in financial markets. Financial markets
favour “irrational” non-Bayesian agents that under-react to information with respect
to Bayes’ rule over “rational” Bayesian agents because under-reacting rules are more
robust to model misspecification than Bayes’.

6 Appendix

Proof of Proposition 1

Proof. By Definition 3,

∀(σ, t), ∀θ ∈ Θ, µNB(θ|σt) = µNB(θ|σt−1)
pθ(σt|)
pNB(σt|)

= µNB(θ|σt−1)

(
(1− α)pNB(σt|) + απθ(σt)

pNB(σt|)

)
= (1− α)µNB(θ|σt−1) + αµNB(θ|σt−1)

(
πθ(σt)

pNB(σt|)

)
= (1− α)µNB(θ|σt−1) + αµNB(θ|σt−1)

(
πθ(σt)∑

θ πθ(σt)µ
NB(θ|σt−1)

)
.

Letting µNB(θ|σt−1) = µB(θ|σt−1) on the right hand side we obtain:

∀(σ, t), ∀θ ∈ Θ, µNB(θ|σt) = (1− α)µNB(θ|σt−1) + αµB(θ|σt−1)

(
πθ(σt)∑

θ πθ(σt)µ
B(θ|σt−1)

)
= (1− α)µNB(θ|σt−1) + αµB(θ|σt).

Where the last equality holds by definition of Bayes’ rule (Definition 2):

µB(θ|σt) :=
πθ(σt)∑

θ πθ(σt)µ(θ|σt−1)
µB(θ|σt−1).

Proof of Proposition 3

Proof. The Lagrangian problem associated with each trader’s maximization problem
is

Li = Epi

∞∑
t=0

βtui(cit(σ)) + λi

(∑
t=0

∑
σt∈St

q(σt)
(
cit(σ)− eit(σ)

))
.

By equating the derivatives of this Lagrangian to 0, I get, for all (t, σ),

∂Li
∂cit(σ)

= 0⇒ βtpi(σt)ui(cit(σ))′ = λiq(σ
t)

12



Letting q0 = 1 (the price of one unit of consumption at t=0 equals 1) I find that
λi = ui(ci0)′. Thus, on every equilibrium path σt,

uB(cBt (σ))′

uNB(cNBt (σ))′
=

pNB(σt)

pB(σt)

uB(cB0 )′

uNB(cNB0 )′
(5)

Thus,

∀t, p
NB(σt)

pB(σt)
> η on path σ ⇒ ∀t, uB(cBt (σ))′

uNB(cNBt (σ))′
> 0 on path σ

⇒ ∀t, uNB(cNBt (σ))′ <∞ on path σ

⇒︸︷︷︸
by A1

∀t, cNBt > 0 on path σ.

Proof of Lemma 1

Proof. Note that

pNB(σt|) : =
∑
θ∈Θ

πθ(σt)µ
NB(θ|σt−1)

can be equivalently rewritten as

pNB(σt|) =
∑
θ∈Θ

pθ(σt|)µNB(θ|σt−1),

and recognize the Bayesian mixture dynamic with respect to the model class {pθ : θ ∈

13



Θ}. Specifically, for all α ∈ (0, 1],

∀(t, σ), pNB(σt) :=
t∏

τ=1

pNB(στ |στ−1)

=

(∑
θ∈Θ

pθ(σt|σt−1)µNB(θ|σt−1)

)
t−1∏
τ=1

pNB(στ |στ−1)

=︸︷︷︸
By Def.3

(∑
θ∈Θ

pθ(σt|σt−1)pθ(σt−1|σt−2)µNB(θ|σt−2)

)
1

pNB(σt−1|σt−1)

t−1∏
τ=1

pNB(στ |στ−1)

=

(∑
θ∈Θ

pθ(σt|σt−1)pθ(σt−1|σt−2)µNB(θ|σt−2)

)
t−2∏
τ=1

pNB(στ |στ−1)

...

=
∑
θ∈Θ

t∏
τ=1

pθ(στ |στ−1)µ0(θ)

=
∑
θ∈Θ

pθ(σ
t)µ0(θ) ∈

[
max
θ∈Θ

pθ(σ
t)µ0(θ),max

θ∈Θ
pθ(σ

t)

]

Finally, note that α = 1⇒ ∀(t, σ), pBt = pNBt and ∀θ ∈ Θ, pθ,t = πθ.

So, ∀(t, σ), pB(σt) =
∑
θ∈Θ

πθ(σ
t)µ0(θ) ∈

[
max
θ∈Θ

πθ(σ
t)µ0(θ),max

θ∈Θ
πθ(σ

t)

]

Proof of Lemma 2
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Proof.

∀(t, σ),∀θ ∈ Θ, ln pθ(σ
t) = ln

t∏
τ=1

(
(1− α)pNB(στ |) + απθ(στ )

)
=

t∑
τ=1

ln
(
(1− α)pNB(στ |) + απθ(στ )

)
≥︸︷︷︸

By concavity of ln(·)

(1− α)
t∑

τ=1

ln pNB(στ |) + α
t∑

τ=1

lnπθ(στ )

= (1− α) ln pNB(σt) + α lnπθ(σ
t)

⇒ ∀(t, σ), ∀θ ∈ Θ, ln
pθ(σ

t)

πθ(σt)
≥ (1− α)

α
ln
pNB(σt)

pθ(σt)

=︸︷︷︸
By Eq. (1)

(1− α)

α
ln

∑
θ∈Θ pθ(σ

t)µ0(θ)

pθ(σt)

≥ ln

(
min
θ∈Θ

µ0(θ)

) (1−α)
α

⇒ ∀(t, σ), ∀θ ∈ Θ, pθ(σ
t) ≥

(
min
θ∈Θ

µ0(θ)

) 1
α
−1

πθ(σ
t).

Proof of Theorem 1

Proof. The result follows from Lemmas 1 and 2

∀(t, σ),
pNB(σt)

pB(σt)
=︸︷︷︸

By Lemma 1

ln

∑
θ∈Θ pθ(σ

t)µ0(θ)∑
θ∈Θ πθ(σ

t)µ0(θ)

≥ maxθ∈Θ pθ(σ
t)µ0(θ)

maxθ∈Θ πθ(σt)

≥︸︷︷︸
By Lemma 2

maxθ∈Θ πθ(σ
t)µ0(θ)

maxθ∈Θ πθ(σt)

(
min
θ∈Θ

µ0(θ)

) 1
α
−1

≥
(

min
θ∈Θ

µ0(θ)

) 1
α

> 0.

Proof of Theorem 2

Proof. By assumption θ∗ ∈ Conv(Θ) \Θ so minθ∈Θ d̄(Pθ∗ ||π(θ)) = η > 0.

Thus, d̄(Pθ∗ ||pB) =︸︷︷︸
by Lemma 7

d̄(Pθ∗ ||πθ̂) = η > 0.
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What is left to show is that α < ᾱ⇒ d̄(Pθ∗ ||PNB) < d̄(Pθ∗ ||πθ̂).
This inequality holds because

d̄(Pθ∗ ||PNB) ≤︸︷︷︸
by

Lemma 3

d̄(Pθ∗ ||pθ̂) ≤︸︷︷︸
by

Lemma 4

d̄(Pθ∗ ||πθ̂);

where Lemma 5 implies that the second inequality is strict for α < ᾱ and Lemma 6
shows that θ∗ ∈ Conv(Θ) \Θ is a sufficient condition for the existence of such ᾱ.

Lemma 3.

∀α ∈ (0, 1],∀θ ∈ Θ, d̄(Pθ∗ ||PNB) ≤ d̄(Pθ∗ ||pθ) Pθ∗-a.s.

Proof. By Lemma 1, for all (t, σ), pNB(σt) =
∑

θ∈Θ pθ(σ
t)µ0(θ). Thus,

∀(t, σ),∀θ ∈ Θ, ln pNB(σt) ≥ ln pθ(σ
t) + lnµ0(θ),

⇒ 1

t
ln

Pθ∗(σt)

pNB(σt)
≤ 1

t
ln
Pθ∗(σt)

pθ(σt)
− 1

t
lnµ0(θ)

⇒ lim
t→∞

[
1

t

[
t∑

τ=1

ln
Pθ∗(στ )

pNB(στ |)
−

t∑
τ=1

d(Pθ∗ ||pNBτ )

]
+

1

t

t∑
τ=1

d(Pθ∗ ||pNBτ )

]

≤ lim
t→∞

[
1

t

[
t∑

τ=1

ln
P (στ )

pθ(στ |)
−

t∑
τ=1

d(Pθ∗ ||pθ,τ )

]
+

1

t

t∑
τ=1

d(Pθ∗ ||pθ,τ )− 1

t
lnµ0(θ)

]
⇒ d̄(Pθ∗ ||pNB) ≤ d̄(Pθ∗ ||pθ) Pθ∗ -a.s..

The last implication follows from the strong law of large number for martingale differences (see
also Sandroni, 2000) that guarantees that for ρ = pθ, p

NB ,

lim
t→∞

1

t

[
t∑

τ=1

ln
P (στ )

ρ(στ |)
−

t∑
τ=1

d(Pθ∗ ||ρτ )

]
= 0, Pθ∗ -a.s.

Lemma 4. For all θ ∈ Θ and for all α ∈ (0, 1),

d̄(Pθ∗ ||pθ) ≤ d̄(Pθ∗ ||πθ),

with strict inequality if there exists an ε > 0 such that ||pNBt − πθ|| > ε a positive
fraction of periods.

Proof. For all, (t, σ), for all θ ∈ Θ,and for all α ∈ (0, 1),

d(Pθ∗ ||pθ,t) = d(Pθ∗ ||(1− α)pNBt + απθ))

≤(a) (1− α)d(Pθ∗ ||pNBt ) + αd(Pθ∗ ||πθ) ; by strict convexity of d(Pθ∗ ||·)
⇒ d̄(Pθ∗ ||pθ) ≤ (1− α)d̄(Pθ∗ ||pNB) + αd̄(Pθ∗ ||πθ) ; summing and averaging over t

⇒ d̄(Pθ∗ ||pθ) ≤ d̄(Pθ∗ ||πθ) P -a.s. ; because d̄(Pθ∗ ||pNB) ≤︸︷︷︸
By Lemma 3

d̄(Pθ∗ ||pθ)
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Moreover, if there exists an ε > 0 such that ||pNBt −πθ|| > ε a positive fraction of periods,
then inequality (a) is strict a positive fraction of periods because d(Pθ∗ ||·) is continuous,
strictly convex, which implies that d̄(Pθ∗ ||pθ) < d̄(Pθ∗ ||πθ) by definition.

Lemma 5.

d̄(Pθ∗ ||πθ̂) > min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ)⇒ ∃ε > 0 : ||pNBt − πθ̂|| > ε a positive fraction of periods.

Proof. I prove the contrapositive statement

||pNBt − πθ̂|| = 0 in most periods⇒ d̄(Pθ∗ ||πθ̂) ≤ min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ)

in three steps.
First:

||pNBt − πθ̂|| = 0 in most periods

⇒︸︷︷︸
By continuity

|d(Pθ∗,t||πθ̂)− d(Pθ∗,t||pθ̂,t)| = 0 in most periods

⇒ d̄(Pθ∗ ||πθ̂) = d̄(Pθ∗ ||pNB) (6)

Second:

||pNBt − πθ̂|| = 0 in most periods

⇒ | min
θ∈Θ\θ̂

d(Pθ∗ ||(1− α)pNBt + απθ)− min
θ∈Θ\θ̂

d(Pθ∗ ||(1− α)πθ̂ + απθ)| = 0 in most periods

⇒︸︷︷︸
By definition

| min
θ∈Θ\θ̂

d(Pθ∗ ||pθ,t)− min
θ∈Θ\θ̂

d(Pθ∗ ||(1− α)πθ̂ + απθ)| = 0 in most periods

⇒ min
θ∈Θ\θ̂

d̄(Pθ∗ ||pθ̂) = min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ) (7)

Last:

d̄(Pθ∗ ||πθ̂) =︸︷︷︸
Eq.(6)

d̄(Pθ∗ ||pNB) ≤︸︷︷︸
By Lem.3

min
θ∈Θ

d̄(Pθ∗ ||pθ̂) ≤ min
θ∈Θ\θ̂

d̄(Pθ∗ ||pθ̂) =︸︷︷︸
Eq.(7)

min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1−α)πθ̂+απθ)

Lemma 6.

θ∗ ∈ Conv(Θ) \Θ⇒ ∃ᾱ : ∀α ∈ (0, ᾱ), d̄(Pθ∗ ||πθ̂) > min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1− α)πθ̂ + απθ)

Proof. θ∗ ∈ Conv(Θ) \ Θ ⇒ ∃w ∈ int(∆Θ) :
∑

k w
kθk = θ∗. Thus, strict convexity

of d(·||·) guarantees that, locally, the accuracy of each parameter can be improved by
moving in the direction of at least one other parameter. That is:

∀θ̂ ∈ Θ,∃θ′ ∈ Θ\θ̂, and ᾱ ∈ (0, 1) : ∀α ∈ (0, ᾱ), d̄(Pθ∗ ||πθ̂) > min
θ∈Θ\θ̂

d̄(Pθ∗ ||(1−α)πθ̂+απθ).
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Lemma 7. Let θ̂ ∈ argminθ∈Θ d̄(P ∗||pθ̂)

d̄(P ∗||pNB) = d̄(P ∗||pθ̂)P
∗-a.s.;

So, d̄(P ∗||pB) = d̄(P ∗||πθ̂)P
∗-a.s..

Proof. By Lemma 3, ∀θ ∈ Θ, d̄(P ∗||pB) ≤ d̄(P ∗||pθ).
I proceed by ruling out the strict inequality for θ = θ̂.
By contradiction, suppose that

d̄(P ∗||pNB) < d̄(P ∗||pθ̂) Pθ∗-a.s..

The above, together with the strong law of large numbers (see lemma 3), would imply

that limt→∞
pθ̂(σt)

pNB(σt)
= 0 Pθ∗-a.s.; this implication is absurd because

lim
t→∞

pθ̂(σ
t)

pNB(σt)
=︸︷︷︸

By Eq.(1)

lim
t→∞

pθ̂(σ
t)∑

θ∈Θ pθ(σ
t)µ0(θ)

= lim
t→∞

1

µ0(θ̂) +
∑

θ∈Θ\θ̂
pθ(σt)
pθ̂(σt)µ0(θ)

= lim
t→∞

1

µ0(θ̂) +
∑

θ∈Θ\θ̂ e
ln
πθ(σt)

p
θ̂

(σt)µ0(θ)

=︸︷︷︸
Pθ∗ -a.s.; by the SLLNMD

lim
t→∞

1

µ0(θ̂) +
∑

θ∈Θ\θ̂ e
t(d̄(Pθ∗ ||pθ̂)−d̄(Pθ∗ ||pθ))µ0(θ)

>︸︷︷︸
Because pθ̂ ∈ argminθ∈Θ d̄(Pθ∗ ||pθ̂).

0.

Finally, note that α = 1⇒ ∀(t, σ), pBt = pNBt and ∀θ ∈ Θ, pθ,t = πθ.
So, d̄(P ∗||pB) = d̄(P ∗||πθ̂)P

∗-a.s..
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